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Abstract
The prevailing thinking is that orthogonal weights
are crucial to enforcing dynamical isometry and
speeding up training. The increase in learning
speed that results from orthogonal initialization in
linear networks has been well-proven. However,
while the same is believed to also hold for nonlin-
ear networks when the dynamical isometry condi-
tion is satisfied, the training dynamics behind this
contention have not been thoroughly explored. In
this work, we study the dynamics of ultra-wide
networks across a range of architectures, includ-
ing Fully Connected Networks (FCNs) and Con-
volutional Neural Networks (CNNs) with orthog-
onal initialization via neural tangent kernel (NTK).
Through a series of propositions and lemmas, we
prove that two NTKs, one corresponding to Gaus-
sian weights and one to orthogonal weights, are
equal when the network width is infinite. Fur-
ther, during training, the NTK of an orthogonally-
initialized infinite-width network should theoreti-
cally remain constant. This suggests that the or-
thogonal initialization cannot speed up training in
the NTK (lazy training) regime, contrary to the pre-
vailing thoughts. In order to explore under what cir-
cumstances can orthogonality accelerate training,
we conduct a thorough empirical investigation out-
side the NTK regime. We find that when the hyper-
parameters are set to achieve a linear regime in non-
linear activation, orthogonal initialization can im-
prove the learning speed with a large learning rate
or large depth.

1 Introduction
Deep learning has been responsible for a step-change in per-
formance across machine learning, setting new benchmarks
for state-of-the-art performance in many applications, from
computer vision [Nixon and Aguado, 2019], natural language
processing [Devlin et al., 2018], to reinforcement learning
[Mnih et al., 2015], and more. The mean field theory [Poole
∗Equal contribution.
†Contact Author

et al., 2016; Schoenholz et al., 2016] recently opened a gate
to analyze the principles behind neural networks with ran-
dom, infinite width, and fully-connected networks as the first
subjects. Broadly, what [Schoenholz et al., 2016] discovered,
and then empirically proved, is that there exists a critical ini-
tialization called the edge of chaos, allowing the correlation
signal from the data to go infinitely far forward and prevent-
ing vanishing or exploding gradients.

Critical initialization requires the mean squared singular
value of a network’s input-output Jacobian to be O(1). It
was already known that the learning process in deep linear
networks could be dramatically accelerated by ensuring all
singular values of the Jacobian being concentrated near 1, a
property known as dynamical isometry [Saxe et al., 2013].
However, what was not known was how to impose dynami-
cal isometry in deep nonlinear networks. [Pennington et al.,
2017] conjectured that they could do so with techniques based
on free probability and random matrix theory, giving rise to
a new and improved form of initialization in deep nonlin-
ear networks. Since then, dynamical isometry has been in-
troduced to various architectures, such as residual networks
[Tarnowski et al., 2018; Ling and Qiu, 2019], convolutional
networks [Xiao et al., 2018], or recurrent networks [Chen et
al., 2018] with excellent performance on real-world datasets.

In fully connected networks, two key factors help to en-
sure dynamical isometry. One is orthogonality, and the other
is appropriately tuning weights’ and biases’ parameters to es-
tablish a linear regime in nonlinear activation [Pennington et
al., 2017]. In straightforward scenarios, orthogonal initial-
ization is usually enough to impose dynamical isometry in
a linear network. The benefit of orthogonality in linear net-
works has been proven recently [Hu et al., 2020]. However,
the dynamics of nonlinear networks with orthogonal initial-
ization has not been investigated. The roadblock is that it has
been unclear how to derive a simple analytic expression for
the training dynamics.

Hence, to fill this gap, we look to a recent technique
called neural tangent kernel (NTK) [Jacot et al., 2018; Huang
and Yau, 2019; Arora et al., 2019; Allen-Zhu et al., 2019;
Du et al., 2018; Zou et al., 2020], developed for studying
the evolution of a deep network using gradient descent in
the infinite width limit. NTK is a kernel characterized by
a derivative of the output of a network to its parameters. It
has been shown that the NTK of a network with Gaussian
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initialization converges to a deterministic kernel and remains
unchanged during gradient descent in the infinite-width limit.
We extend these results to the orthogonal initialization case
and find that orthogonal weights contribute to the same prop-
erties for NTK. Given a sufficiently small learning rate and
wide width, the network optimized by gradient descent be-
haves as a model linearized about its initial parameters [Lee
et al., 2019]. These dynamics are called NTK regime, or lazy
training [Chizat et al., 2019]. As the learning rate gets larger
or the network becomes deeper, outside of the NTK regime,
we expect that there will be new phenomena that can differ-
entiate two initialization. To summarize, our contribution is
as follows,
• We prove that the NTK of an orthogonally-initialized

network converges to the NTK of a network initial-
ized by Gaussian weights in the infinite-width limit.
Besides, theoretically, during training, the NTK of
an orthogonally-initialized infinite-width network stays
constant in the infinite-width limit.
• We prove that the NTK of an orthogonally-initialized

network across architectures, including FCNs and
CNNs, varies at a rate of the same order for finite-width
as the NTK of a Gaussian-initialized network. There-
fore, there are no significant improvements brought by
orthogonal initialization for wide and nonlinear net-
works compared with Gaussian initialization in the NTK
regime.
• We conduct a thorough empirical investigation of train-

ing speed outside the NTK regime to complement the-
oretical results. We show that orthogonal initialization
can speed up training in the large learning rate and depth
regime when the hyper-parameters are set to achieve a
linear regime in nonlinear activation.

2 Related Work
[Hu et al., 2020]’s investigation of orthogonal initialization
in linear networks provided a rigorous proof that drawing
the initial weights from the orthogonal group speeds up con-
vergence relative to standard Gaussian initialization. How-
ever, deep nonlinear networks are much more complicated,
making generating proof the same in these nonlinear settings
much more difficult. For example, [Sokol and Park, 2018] at-
tempted to explain why dynamical isometry imposed through
orthogonal initialization can significantly increase training
speed. They showed a connection between the maximum cur-
vature of the optimization landscape, as measured by a Fisher
information matrix (FIM) and the spectral radius of the input-
output Jacobian, which partially explains why networks with
greater isometric are able to train much faster.

[Jacot et al., 2018], who conceived of the neural tangent
kernel, shows that NTK both converges to an explicit limit-
ing kernel in the infinite-width networks and remains con-
stant during training with Gaussian initialization. [Lee et
al., 2019] reached the same conclusion from a different an-
gle with a demonstration that the gradient descent dynam-
ics of the original neural network fall into its linearized dy-
namics regime. While the original work of NTK is ground-
breaking in producing an equation to predict the behavior

of gradient descent in the NTK regime, it assumes the with
goes to infinity in a sequential order. [Yang, 2019; Yang,
2020] strengthened the proof by taking the limit simultane-
ously. Besides, [Arora et al., 2019; Allen-Zhu et al., 2019;
Du et al., 2018] have proven the same proprieties of NTK
and global convergence of deep networks in non-asymptotic
ways. However, all of these studies did not treat the orthogo-
nal initialization as with our work.

3 Preliminaries

3.1 Networks and Parameterization
Suppose there are D training points denoted by
{(xd, yd)}Dd=1, where input X = (x1, . . . , xD) ∈ Rn0×D,
and label Y = (y1, . . . , yD) ∈ RnL×D. We consider the
following architectures:

Fully-Connected Network (FCN). Consider a fully-
connected network of L layers of widths nl, for l = 0, · · · , L,
where l = 0 is the input layer and l = L is output layer.
Following the typical nomenclature of literature, we denote
synaptic weight and bias for the l-th layer byW l ∈ Rnl×nl−1

and bl ∈ Rnl , with a point-wise activations function φ :
R → R. For each input x ∈ Rn0 , pre-activations and post-
activations are denoted by hl(x) ∈ Rnl and xl(x) ∈ Rnl
respectively. The information propagation for l ∈ {1, . . . , L}
in this network is govern by,

xli = φ(hli), hli =

nl∑
j=1

W l
ijx

l−1
j + bli, (1)

Convolutional Neural Network (CNN). For notational
simplicity, we consider a 1D convolutional networks with
periodic boundary conditions. We denote the filter relative
spatial location β ∈ {−k, . . . , 0, . . . , k} and spatial location
α ∈ {1, . . . ,m}, where m is the spatial size. The forward
propagation for l ∈ {1, . . . , L− 1} is given by,

xli,α = φ(hli,α), hli,α =

nl∑
j=1

k∑
β=−k

W l
ij,βx

l−1
j,α+β + bli, (2)

where weight W l ∈ Rnl×nl−1×(2k+1), and nl is the num-
ber of channels in the lth layer. The output layer of a CNN
is processed with a fully-connected layer, fi(x) = hLi =∑nL
j=1

∑
αW

L
ij,αx

L−1
j,α .

Standard parameterization requires the parameter set
θ = {W l

ij , b
l
i} is an ensemble generated by, W l

ij ∼
N (0,

σ2
w

nl−1
), bli ∼ N (0, σ2

b ), where σ2
w and σ2

b are weight
and bias variances. The variance of weights is scaled by the
width of previous layer nl−1 to preserve the order of post-
activations layer to be O(1). We denote this parameteriza-
tionas standard parameterizaiton. However, this paramteri-
zation can lead to a divergence in derivation of neural tan-
gent kernel. To overcome this problem, ntk-parameterization
was introduced, W l

ij = σw√
nl−1

ωlij , bli = σbβ
l
i , where

ωlij , β
l
i ∼ N (0, 1).
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Network Parameterization W initialization b initialization layer equation

FCN

ntk Gaussian ωij ∼ N (0, 1)
βi ∼ N (0, 1) hl = σw√

nl−1
ωlxl−1 + σbβ

l

ntk Orthogonal (ωl)Tωl = nl−1I

std Gaussian Wij ∼ N (0,
σ2
w

Nl−1
)

bi ∼ N (0, σ2
b ) hl = 1√

s
W lxl−1 + bl

std Orthogonal WTW = σ2
wI

CNN

ntk Gaussian ωij,α ∼ N (0, 1)
βi ∼ N (0, 1) hlα =

∑k
β=−k

σw√
(2k+1)nl−1

ωlβx
l−1
α+β + σbβ

l

ntk Orthogonal (ωlα)Tωlα = nl−1I

std Gaussian Wij,α ∼ N (0,
σ2
w

(2k+1)Nl−1
)

bi ∼ N (0, σ2
b ) hlα = 1√

s
W l
βx

l−1
α+β + bl

std Orthogonal WT
αWα =

σ2
w

2k+1I

Table 1: Summary of improved standard parameterization and ntk-parameterization for Gaussian and orthogonal initialization. The abbrevi-
ation “std” stands for standard, and the “parameterization” is omitted after ntk or std.

3.2 Dynamical Isometry and Orthogonal
Initialization

Consider the input-output Jacobian J = ∂hL

∂x0 =
∏L
l=1D

lW l,
where hL is output function, x0 is input, and Dl is a diagonal
matrix with elements Dl

ij = φ′(hli)δij . Ensuring all singular
values of the Jacobian concentrate near 1 is a property known
as dynamical isometry. In particular, It is shown that two
conditions regarding singular values ofW l andDl contribute
crucially to the dynamical isometry in non-linear networks
[Pennington et al., 2017]. More precisely, the singular values
of Dl can be made arbitrarily close to 1 by choosing a linear
regime in a nonlinear activation. On the other hand, adopting
a random orthogonal initialization can force the singular val-
ues of weights into 1. In particular, weights are drawn from
a uniform distribution over scaled orthogonal matrices obey-
ing,

(W l)TW l = σ2
wI, (3)

This is the standard parameterization for orthogonal weights,
and ntk-parameterization of orthogonality follows,

W l
ij =

σw√
nl−1

ωlij , (ωl)Tωl = nl−1I. (4)

We show a summary of improved standard parameterization
and ntk-parameterization across FCN and CNN for Gaussian
and orthogonal initialization in Table 1. The factor s in the
layer equation of standard parameterization is introduced to
prevent divergence of NTK [Sohl-Dickstein et al., 2020]. The
core idea is to write the width of the neural network in each
layer in terms of an auxiliary parameter, nl = sNl. Instead
of letting nl →∞, we adopt s as the limiting factor.

3.3 Neural Tangent Kernel
The neural tangent kernel (NTK) is originated from [Jacot et
al., 2018] and defined as,

Θt(X,X) = ∇θft(θ,X)∇θft(θ,X)T . (5)

where function ft are the outputs of the network at train-
ing time t, i.e. ft(θ,X) = hLt (θ,X) ∈ RD×nL , and
∇θft(θ,X) = vec([∇θft(θ, x)]x∈X) ∈ RDnL . As such, the
neural tangent kernel is formulated as a DnL ×DnL matrix.
Let η be the learning rate, and L be the loss function. The

ynamics of gradient flow for parameters and output function
are given by,

∂θ

∂t
= −η∇θL = −η∇θft(θ,X)T∇ft(θ,X)L

∂ft(θ,X)

∂t
= ∇θft(θ,X)

∂θ

∂t
= −ηΘt(X,X)∇ft(θ,X)L.

(6)
This equation for ft has no substantial insight in studying
the behavior of networks because Θt(X,X) varies with the
time during training. Interestingly, as shown by [Jacot et al.,
2018], the NTK Θt(X,X) converges to a deterministic ker-
nel Θ∞(X,X) and does not change during training in the
infinite-width limit, i.e. Θt(X,X) = Θ∞(X,X). As a re-
sult, the infinite width limit of the training dynamics are given
by,

∂ft(θ,X)

∂t
= −ηΘ∞(X,X)∇ft(θ,X)L. (7)

In the case of an MSE loss, L(y, f) = 1
2 ‖y − ft(θ, x)‖22, the

Equation (7) becomes a linear model with a solution,

ft(θ,X) = (I− e−ηΘ∞(X,X)t)Y + e−ηΘ∞(X,X)tf0(θ,X).
(8)

4 Theoretical Results
4.1 An Orthogonally Initialized Network is a

Gaussian Process in the Infinite Width Limit
As stated in [Lee et al., 2017; Matthews et al., 2018], the pre-
activation hli of Gaussian initialized network tends to Gaus-
sian processes (GPs) in the infinite-width limit. This is the
proposition to construct the NTK in networks with Gaussian
weights [Jacot et al., 2018]. We extend this result to the
orthogonal initialization across Fully Connected Networks
(FCNs) and Convolutional Neural Networks (CNNs):
Theorem 1. Consider a FCN of the form (1) at orthogonal
initialization, with a Lipschitz nonlinearity φ, and in the limit
as n1, ..., nL−1 →∞, the pre-activations hli, for i = 1, ..., nl
and l ∈ {1, . . . , L}, tend to i.i.d centered Gaussian processes
of covariance Σl which is defined recursively by:

Σ1(x, x′) =
σ2
w

n0
xTx′ + σ2

b

Σl(x, x′) = σ2
wEf∼N (0,Σl−1)[φ(f(x))φ(f(x′))] + σ2

b ,
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For a CNN of the form (2) at orthogonal initialization, and
in the limit as n1, ..., nL−1 → ∞, the pre-activations hli,α
tend to Gaussian processes of covariance Σlα,α′ , which is de-
fined recursively by:

Σ1
α,α′(x, x

′) =
σ2
w

n0(2k + 1)

k∑
β=−k

xTα+βx
′
α′+β + σ2

b

Σlα,α′(x, x
′) =

σ2
w

(2k + 1)

k∑
β=−k

[
E
f∼N

(
0,Σl−1

α+β,α′+β

)
[φ(f(xα+β))φ(f(x′α′+β))]

]
+ σ2

b .

ΣL(x, x′) =
∑
α

δα,α′
[
E
f∼N

(
0,ΣL−1

α,α′

)[φ(f(xα))φ(f(x′α′))]
]

Different from the independence property of Gaussian ini-
tialization, the entries of the orthogonal matrix are correlated.
We use the Stein method and exchangeable sequence to over-
come this difficulty and leave the detailed proof in the ap-
pendix. As shown by Theorem 1, neural networks with Gaus-
sian and orthogonal initialization are in correspondence with
an identical class of GPs.

4.2 Neural Tangent Kernel at Initialization
According to [Jacot et al., 2018], the NTK of a network with
Gaussian weights converges in probability to a deterministic
kernel in the infinite-width limit. We show that the NTK of
an orthogonally initialized network is identical to the one with
Gaussian weights in the infinite-width limit.
Theorem 2. Consider a FCN of the form (1) at orthogonal
initialization, with a Lipschitz nonlinearity φ, and in the limit
as the layers width n1, ..., nL−1 → ∞, the NTK ΘL

0 (x, x′),
converges in probability to a deterministic limiting kernel:

ΘL
0 (x, x′)→ ΘL

∞(x, x′)⊗ InL×nL .

The scalar kernel ΘL
∞(x, x′) is defined recursively by

Θ1
∞(x, x′) = Σ1(x, x′)

Θl
∞(x, x′) = σ2

wΣ̇l(x, x′)Θl−1
∞ (x, x′) + Σl(x, x′),

where

Σ̇l (x, x′) = Ef∼N(0,Σ(l−1))

[
φ̇ (f (x)) φ̇ (f (x′))

]
,

For a CNN of the form (2) at orthogonal initialization, and
in the limit as n1, ..., nL−1 → ∞, the NTK ΘL

0 (x, x′), con-
verges in probability to a deterministic limiting kernel:

ΘL
0 (x, x′)→ ΘL

∞(x, x′)⊗ InL×nL .

The scalar kernel ΘL
∞(x, x′) is given recursively by

Θ1
α,α′∞(x, x′) = Σ1

α,α′(x, x
′)

Θl
α,α′∞(x, x′) =

σ2
w

(2k + 1)

∑
β

[
Σ̇lα+β,α′+β(x, x′)

Θl−1
α+β,α′+β∞

(x, x′) + Σlα+β,α′+β(x, x′)
]

ΘL
∞(x, x′) =

∑
α

δα,α′
[
Σ̇Lα,α′(x, x

′)ΘL−1
α,α′∞

(x, x′)

+ ΣLα,α′(x, x
′)
]

Remark 1. Since the Lipschitz function is differentiable be-
sides a measure zero set, then taking the expectation would
not destroy the whole statement, which allows for the ReLU
activation.

In general, the NTK of CNNs can be computed recursively
in a similar manner to the NTK for FCNs. However, the NTK
of CNNs propagate differently by averaging over the NTKs
regarding the neuron location of the previous layer. Accord-
ing to Theorem 2, the NTK of an orthogonally initialized net-
work converges to an identical kernel as Gaussian initializa-
tion. This suggests these two NTKs are equivalent when the
network structure (depth of L, filter size of 2k + 1, and acti-
vation of φ) and choice of hyper-parameters (σ2

w and σ2
b ) are

the same in the infinite-width limit.

4.3 Neural Tangent Kernel During Training
It is shown that the NTK of a network with Gaussian initial-
ization stays asymptotically constant during gradient descent
training in the infinite-width limit, providing a guarantee for
loss convergence [Jacot et al., 2018]. We find that the NTK
of orthogonally initialized networks have the same property,
which is demonstrated below in an asymptotic way,
Theorem 3. Assume that λmin(Θ∞) > 0 and ηcritical =
λmin(Θ∞)+λmax(Θ∞)

2 . Let n = n1, ..., nL−1 be the width of
hidden layers. Consider a FCN of the form (1) at orthogonal
initialization, trained by gradient descent with learning rate
η < ηcritical (or gradient flow). For every input x ∈ Rn0 with
‖x‖2 ≤ 1, with probability arbitrarily close to 1,

sup
t≥0

‖θt − θ0‖2√
n

, sup
t≥0

∥∥∥Θ̂t − Θ̂0

∥∥∥
F

= O(n−
1
2 ), as n→∞ .

(9)
where Θ̂t are empirical kernels of networks with finite width.

For a CNN of the form (2) at orthogonal initialization,
trained by gradient descent with learning rate η < ηcritical

(or gradient flow), for every input x ∈ Rn0 with ‖x‖2 ≤ 1,
and filter relative spatial location β ∈ {−k, . . . , 0, . . . , k},
with probability arbitrarily close to 1,

sup
t≥0

‖θβ,t − θβ,0‖2√
n

, sup
t≥0

∥∥∥Θ̂t − Θ̂0

∥∥∥
F

= O(n−
1
2 ). (10)

[Jacot et al., 2018] proved the stability of NTK under the
assumption of global convergence of neural networks, while
[Lee et al., 2019] provided a self-contained proof of both
global convergence and stability of NTK simultaneously. In
this work, we refer to the proof strategy from [Lee et al.,
2019; Liu et al., 2020] and extend it to the orthogonal case,
as shown in the appendix.

To certificate this theorem empirically, we adopt three hid-
den layers Erf networks trained by gradient descent with
learning rate η = 1.0 on a subset of the MNIST dataset
of D = 20. We measure changes of weights, empirical
NTK after T = 215 steps of gradient descent for varying
width at both Gaussian and orthogonal initialization. Figure
1(a,b) show that the relative change in the first and last layer
weights scales as 1/

√
n while second and third layer weights

scale as 1/n with Gaussian and orthogonal weights respec-
tively. In Figure 2(c), we observe the change in NTK is upper
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Figure 1: Changes of weights, empirical NTK on a three hidden layer Erf Network. Solid lines correspond to empirical simulation, and
dotted lines are theoretical predictions, i.e., black dotted lines are 1/

√
n while red dotted lines are 1/n. (a) Weight changes on the Gaussian

initialized network. (b) Weight changes on the orthogonally initialized network. (c) NTK changes on networks with Gaussian and orthogonal
initialization.
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Figure 2: Orthogonally initialized networks behave similarly to the networks with Gaussian initialization in the NTK regime. (a,b) We adopt
the network architecture of depth of L = 5, width of n = 800, activation of tanh function, with σ2

w = 2.0, and σ2
b = 0.1. The networks are

trained by SGD with a small learning rate of η = 10−3 for T = 105 steps with a batch size of 103 on cross-entropy loss on full CIFAR-10.
(c,d) We adopt the network architecture of depth of L = 9, width of n = 1600, activation of ReLU function, with σ2

w = 2.0, and σ2
b = 0.1.

The networks are trained by PMSProp with a small learning rate of η = 10−5 for T = 1.2× 104 steps with a batch size of 103 on MSE loss
on MNIST. While the solid lines stand for Gaussian weights, dotted lines represent orthogonal initialization.

bounded by O(1/
√
n) but is closer to O(1/n) for both Gaus-

sian and orthogonal initialization. The discrepancy between
theoretical bound (O(n−1/2)) and experimental observation
(O(n−1)) has been solved in [Huang and Yau, 2019], where
they prove that relative change of empirical NTK of Gaussian
initialized networks is bounded by O(1/n). Without loss of
generality, we infer that the proof framework is suitable for
orthogonal weights.

5 Numerical Experiments
Our theoretical result indicates that ultra-wide networks with
Gaussian and orthogonal initialization should have the same
convergence rate during the gradient descent training. This
means that two different initializations have similar training
dynamics for loss and accuracy function in the NTK regime.
Thus, it is now for us to verify our theories in practice. To
this end, we perform a series of experiments on MNIST and
CIFAR10 dataset. All the experiments are performed with the
standard parameterization with TensorFlow.

We compare the train and test loss and accuracy with two
different initialization, i.e., Gaussian and orthogonal weights
using D = 256 samples on full CIFAR-10 and MNIST
dataset, as summarized in Figure 2. To reduce noise, we av-
eraged the results over 30 different instantiations of the net-

works. Figures 2(a,b) show the results of the experiments on
networks of depth L = 5, width n = 800, and activation tanh
function, using SGD optimizer with a small learning rate of
η = 10−3 for T = 105 steps on CIFAR-10 dataset. Figure
2(c)(d) display the results on networks of depth L = 9, width
n = 1600, and activation ReLU function, using PMSProp
[Hinton et al., 2012] optimizer with a small learning rate of
η = 10−5 for T = 1.2×104 steps on MNIST. In all cases, we
see an excellent agreement between the training dynamics of
the two initialization, which is consistent with our theoretical
finding (Theorem 3).

Having confirmed the consistency between training speed
of networks with Gaussian and orthogonal initialization in the
NTK regime, our primary interest is to find when orthogonal
initialization accelerates the training speed for nonlinear net-
works. We need to go beyond the NTK regime and exper-
iment with an additional requirement for hyper-parameters
according to the evidence that orthogonal initialization in-
creases learning speeds when the variance of weights and bi-
ases is set to achieve a liner regime in nonlinear activation
[Pennington et al., 2017].

Following [Pennington et al., 2017], we set σ2
w = 1.05,

and σ2
b = 2.01 × 10−5, and φ(x) = tanh(x). We then

vary the width of network in one set of experiments as n =
400, 800 and 1600 when L = 50, and the depth in another
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Figure 3: The steps τ as a function of learning rate η of two lines of networks on both train and test dataset. The results of orthogonal networks
are marked by dotted lines while those of Gaussian initialization are plotted by solid lines. Networks with varying width, i.e. n = 400, 800,
and 1600, on (a) train set and (b) test set; Networks with varying depth, i.e. L = 50, 100, and 200, on (c) train set and (d) test set. Different
colors represent the corresponding width and depth. While curves of orthogonal initialization are lower than those of Gaussian initialization
in the small learning rate phase, the differences become more significant in the large learning rate. Besides, the greater the depth of the
network, the more significant the difference in performance between orthogonal and Gaussian initialization.
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Figure 4: Learning dynamics measured by the optimization and gen-
eralization accuracy on train set and test set, for networks of depth
L = 100 and width n = 400. We additionally average our results
over 30 different instantiations of the network to reduce noise. Black
curves are the results of orthogonal initialization, and red curves are
performances of Gaussian initialization. (a) The training speed of an
orthogonally initialized network is faster than that of a Gaussian ini-
tialized network. (b) On the test set, compared to the network with
Gaussian initialization, the orthogonally initialized network not only
learns faster but ultimately converges to a higher generalization per-
formance.

as L = 50, 100 and 200, when n = 400. All networks are
trained by SGD optimizer on CIFAR-10 dataset. To evaluate
the relationship between the learning rate and training speed,
we select a threshold accuracy of p = 0.25 and measure the
first step τ when accuracy exceeds p. Figure 3 shows the steps
of τ as a function of the learning rate of η for both the training
and testing sets.

The results in Figure 3 suggest a more quantitative analysis
of the learning process until convergence. We train networks
listed in Figure 3 for 5×104 steps with a certain learning rate.
We show the results of a certain network of depth L = 100
and width n = 400 trained with a learning rate η = 0.01 as
a typical example in Figure 4. The results of other network
structures can be found in the appendix. It is shown that the
training speed of orthogonally initialized networks is faster
than that of Gaussian initialized networks outside the NTK
regime. At the same time, orthogonally initialized networks
can finally obtain a higher generalization result.

We draw two main conclusions from these experiments.
First, orthogonal initialization results in faster training speeds
and better generalization than Gaussian initialization in the
large learning rate phase. It was shown that the large learning
rate phase has many different properties from the small learn-
ing rate phase [Lewkowycz et al., 2020; Li et al., 2019]. Our
finding can be seen as another effect in the large learning rate
phase. Second, given the constant width, the greater the depth
of the network, the more significant the difference in perfor-
mance between orthogonal and Gaussian initialization. This
phenomenon is consistent with the theoretical result observed
in deep linear networks. It was found that the width needed
for efficient convergence to a global minimum with orthogo-
nal initialization is independent of the depth. In contrast, the
width needed for efficient convergence with Gaussian initial-
ization scales proportionally in depth [Hu et al., 2020].

6 Conclusion
This study on the neural tangent kernel of wide and nonlin-
ear networks with orthogonal initialization has proven, the-
oretically and empirically, that the NTK of an orthogonally-
initialized network across both FCN and CNN converges to
the same deterministic kernel of a network initialized from
Gaussian weights in the finite-width limit. We find that
with an infinite-width network and a gradient descent (gra-
dient flow) training scheme, the NTK of an orthogonally
initialized network does not change during training. Fur-
ther, it has the same order convergence rate from a finite
to an infinite width limit as that of a Gaussian initialized
network. Our theoretical results suggest that the dynam-
ics of wide networks with orthogonal initialization behave
similarly to that of Gaussian networks with a small learn-
ing rate verified by experiments. This observation implies
that orthogonal initialization is only effective when not in
the lazy (NTK) regime. And it is consistent with the fact
that the infinite-width analysis does not explain the practi-
cally observed power of deep learning [Arora et al., 2019;
Chizat et al., 2019]. Last, we find that orthogonal networks
can outperform Gaussian networks in the large learning rate
and depth on both train and test sets.
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